

				Sub	ject	Coc	le: K	CA	104
Roll No:									

Printed Page: 1 of 2

MCA (SEM I) THEORY EXAMINATION 2021-22 DISCRETE MATHEMATICS

Time: 3 Hours Total Marks: 100

Note: 1. Attempt all Sections. All the symbols have their usual meaning.

SECTION A

1. Attempt all questions in brief.

Question	Marks	СО
What is the cardinality of the set?	2	1
Find the cardinality of the set $\{1, \{2, \phi, \{\phi\}\}, \{\phi\}\}\$.		
Let the two following functions be defined on set of real numbers be as:	2	1
$f(x) = 2x+3$ and $g(x) = x^2+1$. Find the $(f \circ g)(x)$.		
Define the well-ordered set? Give an example of well-ordered set.	2	2
Draw the Hasse diagram of the lattice of (D ₆ ,).	2	2
Define Tautology and Contradiction.	2	3
Discuss the truth table of $p \leftrightarrow q$.	2	3
What is the generator of a cyclic group?	2	4
Find the order of each element in the group $(\{1, -1\}, .)$.	2	4
Find the number of handshakes in party of 12 people, where each two of	2	5
them shake hands with each other.		
Discuss the pigeonhole principle?	2	5
	What is the cardinality of the set? Find the cardinality of the set $\{1, \{2, \phi, \{\phi\}\}, \{\phi\}\}\}$. Let the two following functions be defined on set of real numbers be as: $f(x) = 2x+3$ and $g(x) = x^2+1$. Find the $(fog)(x)$. Define the well-ordered set? Give an example of well-ordered set. Draw the Hasse diagram of the lattice of $(D_6,)$. Define Tautology and Contradiction. Discuss the truth table of $p \leftrightarrow q$. What is the generator of a cyclic group? Find the order of each element in the group $(\{1, -1\}, .)$. Find the number of handshakes in party of 12 people, where each two of them shake hands with each other.	What is the cardinality of the set? Find the cardinality of the set $\{1, \{2, \phi, \{\phi\}\}, \{\phi\}\}\}$. Let the two following functions be defined on set of real numbers be as: $f(x) = 2x+3$ and $g(x) = x^2+1$. Find the $(fog)(x)$. Define the well-ordered set? Give an example of well-ordered set. 2 Draw the Hasse diagram of the lattice of $(D_6,)$. 2 Define Tautology and Contradiction. 2 Discuss the truth table of $p \leftrightarrow q$. 2 What is the generator of a cyclic group? Find the order of each element in the group $(\{1, -1\}, .)$. 2 Find the number of handshakes in party of 12 people, where each two of them shake hands with each other.

SECTION B

2. Attempt any three of the following:

Qno.	Question	Marks	CO
a.	Prove that the relation $(x, y) \in \mathbb{R}$, if $x \ge y$ defined on the set of positive	10	1
	integers is a partial order relation.		
b.	If B = $\{1, 3, 5, 15\}$, then show that $(B,+,\cdot,\cdot)$ is a Boolean Algebra,	10	2
	where $a + b = \lim_{a \to a} (a, b)$, $a \cdot b = \gcd(a, b)$ and $a' = \frac{15}{a}$.		
c.	(i) Prove that conditional proposition and its contrapositive are	10	3
	equivalent, i.e. $(p \rightarrow q) \equiv \sim q \rightarrow \sim p$		
	(ii) Prove the equivalence: $(p \rightarrow q) \rightarrow q \equiv p \lor q$		
d.	Show that set $\mathbb{Z}_6 = \{0,1,2,3,4,5\}$ forms a group with respect to addition	10	4
	modulo 6.		
e.	(i) State all PEANO's axioms.	10	5
	(ii)In how many ways, can 7 boys and 5 girls be seated in a row, so that		
	no two girls may sit together?		

SECTION C

3. Attempt any *one* part of the following:

Qno.	Question	Marks	CO
a.	In a survey of 60 people, it was found that 25 eat Apple, 26 eat Orange	10	1
	and 26 eat <i>Banana</i> fruit. Also 9 eat both <i>Apple</i> and <i>Banana</i> , 11 eat both		
	Orange and Apple, and 8 eat both Orange and Banana. 8eat no fruit at		
	all. Then determine		
	i. the number of people who eat all three fruit.		
	ii. the number of people who eat exactly two fruit.		

				Sub	ject	Coc	le: k	CA	104
Roll No:									

Printed Page: 2 of 2

MCA (SEM I) THEORY EXAMINATION 2021-22 DISCRETE MATHEMATICS

		iii. the number of people who eat exactly one fruit		
b) .	State and Prove De Morgan's laws for set theory.	10	1

4. Attempt any *one* part of the following:

Qno.	Question	Marks	СО
a.	 (i)Write the definition of the maximal, minimal, greatest and least element of a Poset. (ii)If S = {10, 11, 12}. Determine the power set of S. Draw the Hasse diagram of Poset (P(S),⊆). (iii)Find the maximal, minimal, greatest and least element of the Poset in Part (ii). 	10	2
b.	 i) Determine the DNF of Boolean expression f(x, y, z) = x + y'. z ii) Simplify the following Boolean expression using K-Map method: A'B'C'+A'B'C+A'BC+A'BC'+AB'C+ABC. 	10	2

5. Attempt any *one* part of the following:

	recompeting one pure or the rollowing.		
Qno.	Question	Marks	CO
a.	(i) Given the value of $p \to q$ is false, determine the value of $(\sim p \lor \sim q) \to .q$ (ii) Prove the equivalence: $(p \to q) \to q \equiv p \lor q$.	10	3
b.	State and Prove De Morgan's laws for propositions using truth table.	10	3

6. Attempt any *one* part of the following:

Qno.	Question	Marks	СО
a.	Show that set of all stegers Z forms a group with respect to binary	10	4
	operation * defined as a * b = $a + b + 1$, where $a,b \in \mathbb{Z}$		
b.	(i)Define Ring and Field. Give an example of a Ring and a Field.	10	4
	(ii)Prove that every cyclic group is abelian.		

7. Attempt any *one* part of the following:

Qno.	Question	Marks	CO
a.	State Mathematical Induction. Using the Mathematical Induction, show	10	5
	that $1^2 + 2^2 + 3^2 + + n^2 = \frac{n(n+1)(2n+1)}{6}, n \ge 1.$		
b.	Use generating functions to solve the recurrence relation,	10	5
	$a_n - 9a_{n-1} + 20a_{n-2} = 0$ where $a_0 = -3$ and $a_1 = -10$.		